Linux for Oracle specialists

Frits Hoogland

DBA Symposium 18 November 2008
WHO AM I?

- Frits Hoogland
- Working with oracle software since 1996
- Blogging at http://frits.homelinux.com
- Email: frits@frits.homelinux.com
- Oracle DB, Application server(s), EBS
- Tomcat, Jboss, Websphere
- Postgresql, enterprise DB, MySQL
- Apache
- Technical (network) security
AGENDA

- Poll
- History, redhat and oracle
- Linux 32 and 64 bit
- Access to linux systems
- X
- IO
- Handy tools: logrotate
- Handy tools: sar
- Handy tools: sosreport
- Handy tools: mii-tool/ethtool
- Handy tools: iperf
POLL

- Anyone using linux for corporate systems with oracle?
- Coming from:
 - Unix
 - Mainframe
 - Windows
- Tidbits:
 - 32 bit
 - 64 bit
- Version:
 - RHEL3
 - RHEL4
 - RHEL5
What is Linux?

- A unix like kernel
- Created and conceived in 1991 by a Finnish student called Linus Torvalds
- A kernel is not an complete operating system
Why Linux?
- A project to study the intel 80386 processor

Close relationship with Minix (Tanenbaum et al)
- Restricted use of Minix source
- Linux was depended upon Minix userspace
HISTORY, REDHAT AND ORACLE

- GNU
 - Free software mass collaboration project
 - Richard Stallman
 - Januari 1984
 - “GNU’s Not Unix”
 - GNU General Public License “GPL”
HISTORY, REDHAT AND ORACLE

• GNU software includes:
 – bash
 – Autoconf
 – Binutils
 – Bison
 – Emacs
 – Gcc
 – Gnome
 – Libstdc++
HISTORY, REDHAT AND ORACLE

- Minix 16-bit design at that time
 - Linux specifically meant for 32 bit intel 80386
 - Debate/critisism about kernel design

- Linux could benefit from GNU userspace tools

- GNU could benefit from Linux kernel

- Linux released under GPL in 1992
 - version 0.12
 - With GNU userland tools
HISTORY, REDHAT AND ORACLE

- GNU General Public License; GNU GPL; GPL

 - Free software license
 - Copyleft license

 - Free for anyone to use
 - Free for anyone to modify
 - Modifications need to be made publically available
 - GPL’ed source can not be made close source
 - Source needs to be available

This is my interpretation, I am not a lawyer!
HISTORY, REDHAT AND ORACLE

• Distribution / “Distro”
 - Linux kernel
 - GNU tools
 - X window system
 - Distribution specific things
 • Startup scripts
 • Package manager
 - Much more...
Distributions

- Anyone is free to make a distribution...

- Commercial: RedHat, SUSE, Ubuntu, Mandriva
- Community: Debian, Gentoo
- Single person: Slackware

- Amongst the approx. ~ 345 distributions
Back to the Oracle connection...

- Supported Distro’s for Oracle products:
 - RedHat enterprise Linux (RHEL)
 - SuSE Linux Enterprise Server (SLES)
 - Asianux

- See metalink “certify” tab for specific details
The RHEL – OEL connection

- RHEL *needs* to make source available

- Source can be recompiled to make RHEL clone:
 - CentOS (most popular) – http://www.centos.org
 - Whitebox enterprise Linux – http://whiteboxlinux.org
 - StartCom Linux – http://www.startcom.org

- Oracle Enterprise Linux – http://linux.oracle.com
HISTORY, REDHAT AND ORACLE

- The RHEL – OEL connection
 - OEL is created from the source of RHEL
 - Different artwork
 - Compatible at source and binary level
 - Different online repository (up2date)
 - Using oracle’s up2date repository with RHEL install!
 - Oracle patches
HISTORY, REDHAT AND ORACLE

• The RHEL – OEL connection

• Conclusion:
 – RHEL and OEL are made to be fully compatible
 – New versions are made from RHEL source
 – Oracle can patch something, and donate it to linux community (for version 5):
 • Kernel: patch for bug with bonding ethernet devices
 • Kernel-utils: Updated firmware from Intel
LINUX 32 AND 64 BIT

- Linux 32 bit versus Linux 64 bit
 - Processor address bus width
 - 32 bit Linux can be installed on 64 bit processor
 - 64 bit Linux can NOT be installed on 32 bit processor
- Why? Memory addressing!
 - $2^{32} = 4,294,967,296 = 4\text{ GB}$
 - $2^{64} = 18,446,744,073,709,551,616 = 16\text{ EB}$
LINUX 32 AND 64 BIT

• RHEL4 / 32 bit kernel types:
 – Standard/UP kernel: kernel-2.6.9-78.EL.i686.rpm
 • 3GB userspace, 1GB kernelspace
 • 4GB addressable
 – SMP kernel: kernel-smp-2.6.9-78.EL.i686.rpm
 • 3GB userspace, 1GB kernelspace
 • 16GB addressable
 – Hugemem kernel: kernel-hugemem-2.6.9-78.EL.i686.rpm
 • 4GB userspace, 4GB kernelspace *
 • 64GB addressable
LINUX 32 AND 64 BIT

- 16 GB ?!
- 64 GB ?!

- But that is *physically* impossible!
 (again: $2^{32} = 4'294'967'296 = 4$ GB)
LINUX 32 AND 64 BIT

• PAE
 – Physical Address Extension

• Processor option:

 [root@test ~]# cat /proc/cpuinfo
 ...
 flags : fpu vme de pse tsc msr paes mce cx8 apic
 mtrr pge mca cmov pat pse36 clflush mmx fxsr sse
 sse2 constant_tsc monitor
LINUX 32 AND 64 BIT

- PAE increases the number of bits of the address bus to 36!
- $2^{36} = 68'719'476'736 = 64$ GB
- But it’s not that easy...
LINUX 32 AND 64 BIT

• Virtual addressing in userspace is not modified
 – 32-bits addresses
 – 32-bits -> 4GB maximum!

• So all limits still apply
 – Even with PAE

• Need special call to address memory using PAE
LINUX 32 AND 64 BIT

- PAE & Oracle database
 - “VLM” / “Very Large Memory”
 - USE INDIRECT DATA BUFFERS = true
 - Effectively places the buffercache in PAE memory
 - Usage of ramfs (or shmfs or tmpfs): /dev/shm
 - Following parameters are incompatible with VLM:
 - SGA_TARGET
 - DB CACHE SIZE (only DB BLOCK BUFFERS allowed)
 - DB_xK_CACHE_SIZE
 - MEMORY_TARGET

This is essentially a 32 bit issue, same with other 32-bit OS’es
LINUX 32 AND 64 BIT

- PAE & Oracle database
 - Only for putting buffercache beyond 4GB
 - All other structures remain in 32-bit addressable memory
 - Which means 4GB* limit still applies to those
LINUX 32 AND 64 BIT

- RHEL5 / 32 bit kernel types:
 - Standard kernel: kernel-2.6.18-92.el5.i686.rpm
 - 3GB userspace, 1GB kernelspace
 - 4GB addressable
 - PAE kernel: kernel-PAE-2.6.18-92.el5.i686.rpm
 - 3GB userspace, 1GB kernelspace
 - 64GB addressable (16GB supported?)
LINUX 32 AND 64 BIT

- **RHEL4 / 64 bits**
 - Kernel-2.6.9-78.EL.x86_64.rpm
 - Standard kernel for UP systems
 - Kernel-smp-2.6.9-78.EL.x86_64.rpm
 - Kernel for systems with up to 8 CPU’s
 - Kernel-largesmp-2.6.9-78.EL.x86_64.rpm
 - Kernel for systems with up to 512 CPU’s

- **RHEL5 / 64 bits**
 - Kernel-2.6.18-92.el5.x86_64.rpm

- **For version 4 and 5 kernel current limit is 256GB**
LINUX FOR ORACLE SPECIALISTS – FRITS HOOGLAND

LINUX 32 AND 64 BIT

- General recommendations:
 - 32 bit hardware is deprecated
 - 64 bit hardware is not excessively more expensive
 - Use 64 bit O/S whenever possible
 - Only use 32 bit O/S when no other options exist
 - It’s possible to use 32 bit software on 64 bit O/S!

- It *is* easy/likely to encounter memory scaling problems with 32-bit OS’es!!
ACCESS TO LINUX SYSTEMS

- Access & usage of linux(/unix) systems

- Common methods: *(poll: who uses)*
 - Telnet
 - Rsh/Rlogin/R*
 - FTP
 - XDMCP
 - VNC (?)
 - Ssh
 - Others?
ACCESS TO LINUX SYSTEMS

• Telnet
 – Does NOT encrypt any data, including password
 – No authentication to detect MITM attacks
 – Most telnet daemons have vulnerabilities

 – **STRONGLY** advised NOT to use it
 – I would call telnet usage blamable neglect

 – Even persistent telnet users (networking equip.) have ssh/encrypted access nowadays.
ACCESS TO LINUX SYSTEMS

- Rsh / rlogin
 - Does NOT encrypt any data, including password
 - No authentication to detect MITM attacks
 - Very weak authentication

 STRONGLY advised NOT to use it
 - I would call rsh/rlogin usage blamable neglect
ACCESS TO LINUX SYSTEMS

• FTP
 - Does NOT encrypt any data, including password
 - No authentication to detect MITM attacks
 - Still very popular and standard
 - Username/password easy sniff able
 - Usage defendable if files to be transferred are non-sensitive and non-valueable.
ACCESS TO LINUX SYSTEMS

- XDMCP
 - X Display Manager Control Protocol
 - The client sends a broadcast on UDP/177
 - Servers with XDMCP enabled send a ‘WILLING’ packet to sender
 - Not enabled in modern X implementations
 - Unencrypted
 - Not secure
 - DOS attacks using XDMCP possible
ACCESS TO LINUX SYSTEMS

- **VNC**
 - Virtual Network Computing
 - Developed by the Olivetti and Oracle research lab
 - 1999: acquired by AT&T, 2002: closed
 - The VNC protocol (RFB) is not a secure protocol
 - Passwords are not sent in plain text
 - Sensitive to brute-force attacks
 - Got known vulnerabilities
 - Continued by realvnc, ultravnc, tightvnc, etc.
The default VNC server uses its own username/password file.

- Upon login in VNC, an already started and authenticated session is continued

Known issues include:

- Hard to start vnc servers at startup
- Network sockets can get stuck during stop/start, resulting in non-usuable ports
- Single keystrokes resulting in repeating characters

Not suitable as primary access method “(?)”
- Advice: better (stable/secure/easy) solutions exist
ACCESS TO LINUX SYSTEMS

- SSH
 - Secure SHell
 - most common implementation: openssh
 - Available on all popular Linux and Unix distributions
 - Available on Windows with Cygwin
 - The most popular implementation since 2005
 - Has file transfer module (SFTP)
 - Can ‘tunnel’ X traffic through the session
ACCESS TO LINUX SYSTEMS

- SSH uses public-key cryptography to authenticate the remote computer and allow the remote computer to authenticate the user, if necessary.

- Other functionality include:
 - Tunneling and forwarding (back or forth) of TCP ports
 - Backup, mirror or copy files secure using rsync
ACCESS TO LINUX SYSTEMS

Conclusion

- Security/secure access is important today
- Security will be more important in near future
- SSH is the only sensible method for remote usage of linux/unix servers
- SSH provides both access and file transfer
ACCESS TO LINUX SYSTEMS

- Many SSH clients exist
 - My favourite SSH client for windows is putty
 - http://www.chiark.greenend.org.uk/~sgtatham/putty/
 - My favourite SFTP client for windows is winscp
 - http://winscp.net

- Both are free
ACCESS TO LINUX SYSTEMS

- Nomachine
 - Open source version exists (freenx) but found I’ve too many bugs
 - No active processes when not used
 - Leverages openssh and openssh’s security
 - Suspendable sessions like VNC
 - If network/VPN drops, or need to continue at another place
 - *Extremely* fast, even over low bandwidth lines
ACCESS TO LINUX SYSTEMS

- Only uses 1 port; 22/tcp
 - Yes, that’s sshd
 - Sshd activates the session
- Free commercial version limited to 2 users/sessions
ACCESS TO LINUX SYSTEMS

D E M O
ACCESS TO LINUX SYSTEMS

- How does NoMachine work?

1. Ssh session is initiated
2. Logon using ssh certificate based authentication with nx user
3. Nxserver authenticates username and password with PAM
4. After authentication, a session is setup for username
X

- Graphical environment for Linux/Unix
- Needed for normal installation of Oracle software

Client/Server

- Client and server are reversed by X
 - The client starts a X server
 - Connection is made with the remote machine
 - The remote machine (the server ;-) is the client
X

- (microsoft) windows has no X server
 - Traditionally, commercial/expensive X servers were used on windows:
 - Reflection X, Exceed amongst others
 - Later, cygwin was used for X.
 - This required a significant installation of cygwin packages, but was free.
 - Now, we have Xming
 - Free, lightweight X server for windows (6MB)
Use (xming) X from a windows system

1. The remote ssh daemon must allow X11Forwarding:

 /etc/ssh/sshd_config:
 X11Forwarding yes

2. Start Xming locally
 By default, Xming listens on localhost
3. Enable X11 forwarding:
4. And start your session:
That’s all!

- No need to hassle with DISPLAY (!!)
- X is able to follow the session
 - When another host is accessed using ssh
 - Use ‘ssh -X’
 - X11Forwarding
X

- X and su-ing to other users
- I remember having troubles with X and su
 - DISPLAY lost
 - X authentication/cookies problems
1. Login on a box with X forwarding using putty:

```
login as: oracle
oracle@centos4's password:
[oracle@centos4 ~]$ echo $DISPLAY
localhost:11.0
[oracle@centos4 ~]$ xclock ← X app works
[oracle@centos4 ~]$
```
2. Now su to another user and start a X app again:

[oracle@centos4 ~] $ su –
Password:
[root@centos4 ~] # xclock

…..what happens?
X

WTF?! The xcloc displays !

- **PAM**
 - Plugable Authentication Modules
 - `/etc/pam.d/su`:
    ```
    ...
    session optional /lib/security/$ISA/
    pam_xauth.so
    ```

- Works only for sessions with X tunneling using ssh daemon, not on console
- Tested with CentOS 4&5
IO

- IO
 - Input and Output to devices
 - IO referred commonly to IO of blockdevices

- Normal / synchronous IO
 - pread64() / pwrite64() calls on linux
 - System call lasts entire read or write
 - This is done on oracle linux by default
IO

- Asynchronous IO
 - `io_submit()` / `io_getevents()` calls on linux
 - IO is submitted, process can continue
 - `filesystemio_options ‘setall’ or ‘asynch’`
 - Default ‘none’
 - Not beneficial for reading
 - Not used for reading, at least on linux
 - Can be beneficial for writing
IO

Synchronous write

\[\text{pwrite64()} \]

\[\text{wait} \]

\[\text{IO call} \]

Session continues

Asynchronous write

\[\text{io_submit()} \]

\[\text{io_getevents()} \]

\[\text{IO call} \]

Session continues
Asynchronous write

IO call

io_submit()
io_getevents()
IO

- Demo!
 - Database with filesystemio_options = none
 - Database with filesystemio_options = asynch
IO

- **AIO**
 - Two proc entries for rhel4 & 5
 - `/proc/sys/fs/aio-max-nr`
 - System wide maximum number of aio contexts
 - `/proc/sys/fs/aio-nr`
 - Current number of used aio contexts
 - `aio-nr = aio-max-nr`
IO

- **Direct IO**
 - Optional flag (O_DIRECT) for opening file or device
 - Causes blocks **NOT** to be buffered at O/S layer
 - DIO has to be enabled explicitly on all platforms
 - Except windows
 - The symptom when O/S is caching and the database is called ‘double buffering’

 Double buffering not always a bad thing!
IO

- DIO is enabled for oracle when
 - filesystemio_options = setall or direct
- Detectable when stracing the startup of the database
- DEMO
IO

- noatime
 - Mount option for most filesystems
 - Means an entire filesystem is affected
 - Noatime = Access Time in Inode is not updated
 - An inode keeps 3 times: ctime, mtime and atime
 - This means every time an IO is done to a file, an extra IO is done to update the atime in the inode
 - noatime prevents update of atime
IO

- Example entry:

```
[root@centos4 ~]# cat /etc/fstab
...
/dev/sdc1 /oracle ext3 noatime 0 0
...
```
HANDY TOOLS: LOGROTATE

- Logrotate
 - Fully automated (log) files cleaner
 - Simple way of cleaning, without scripts
 - Available for any linux/unix platform
HANDY TOOLS: LOGROTATE

- Layout of an logrotate entry in /etc/logrotate.d:

 [root@test ~]# cat /etc/logrotate.d/sample
 /path/to/logfile /path/to/logfile {
 options
 }

HANDY TOOLS: LOGROTATE

• Example of logrotation for default apache:

```bash
[root@test ~]# cat /etc/logrotate.d/httpd
/var/log/httpd/*log {
  missingok
  notifempty
  sharedscripts
  postrotate
    /sbin/service httpd reload > /dev/null 2> /dev/null || true
  endscript
}
```
HANDY TOOLS: LOGROTATE

- Example of logrotation for oracle database:

 [root@test ~]# cat /etc/logrotate.d/oracle_database
/oracle/db/*/adump/*aud /oracle/db/*/bdump/*trc /oracle/db/*/cdump/core_* /oracle/db/*/udump/*trc {
 daily
 compress # compress after a day
 rotate 7 # remove after week
 missingok
}

(continued next slide)
HANDY TOOLS: LOGROTATE

/oracle/db/*/bdump/alert*log {
 copytruncate
daily
compress # compress after a day
rotate 7 # remove after week
missingok
}

(alert log file requires special handling
.....continued next slide)
/oracle/db/*/network/log/*log {
copytruncate
daily
compress # compress after a day
rotate 7 # remove after week
missingok
}

(listener log file requires special handling too
.....continued next slide)
HANDY TOOLS: LOGROTATE

/oracle/db/*/network/trace/*trc {
 daily
 compress # compress after a day
 rotate 7 # remove after week
 missingok
}

HANDBY TOOLS: SAR

- Sar (System Activity Reporter)
 - Collect, report or save system activity information
 - IO, Paging, Device activity, CPU activity, Runqueue, Process list, memory and swap, kernel tables, context switches, swapping, etc.
 - Very handy information for troubleshooting
 - Especially historically!
HANDY TOOLS: SAR

- Sar is not installed by default
 - Sar is installed by the `sysstat` rpm
 - The sysstat rpm is an oracle dependency
 - So it should be installed on a linux server with oracle products
HANDY TOOLS: SAR

- Historical sar data:
 - Available in /var/log/sa
 - Number of days available depended on:

[root@test ~]# cat /etc/sysconfig/sysstat
How log to keep log files (days), maximum is a month
HISTORY=7
HANDY TOOLS: SAR

- Getting historical sar data

```
[root@test ~]# cd /var/log/sa
[root@test ~]# ls
sa20 sa21 sa24 sa25 sa26 sar20 sar25 sar26
[root@test ~]# sar -q -f sa25 -s 10:00:00 -e 11:00:00
```
<table>
<thead>
<tr>
<th>Time</th>
<th>Runq-sz</th>
<th>Plist-sz</th>
<th>LDavg-1</th>
<th>LDavg-5</th>
</tr>
</thead>
<tbody>
<tr>
<td>10:00:01 AM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10:10:01 AM</td>
<td>1</td>
<td>121</td>
<td>0.31</td>
<td>0.08</td>
</tr>
<tr>
<td>10:20:01 AM</td>
<td>1</td>
<td>121</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>10:30:01 AM</td>
<td>1</td>
<td>121</td>
<td>0.02</td>
<td>0.01</td>
</tr>
<tr>
<td>10:40:01 AM</td>
<td>0</td>
<td>121</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Average</td>
<td>1</td>
<td>121</td>
<td>0.04</td>
<td>0.03</td>
</tr>
</tbody>
</table>

[root@test ~]#
HANDY TOOLS: SOSREPORT

- Sosreport
 - Gather tool for redhat linux system information:
 - Settings
 - Logs
 - Hardware info
 - Disk/partitioning/space info
 - /proc/
 - Etc... (much more!)
 - Very useful for remote linux troubleshooting
HANDY TOOLS: MII-TOOL/ETHTOOL

- Both tools to display physical network card settings

[root@test ~]# mii-tool eth0
eth0: negotiated 100baseTx-FD, link ok
HANDY TOOLS: MII-TOOL/ETHTOOL

[root@test ~]# ethtool eth0
Settings for eth0
 Supported ports: [TP MII]
 Supported link modes: 10baseT/Half 10baseT/Full
 100baseT/Half 100baseT/Full
 Supports auto-negotiation: Yes
 Advertised link modes: 10baseT/Half 10baseT/Full
 100baseT/Half 100baseT/Full
 Advertised auto-negotiation: Yes

(continued next slide)
HANDY TOOLS: MII-TOOL/ETHTOOL

Speed: 100Mb/s
Duplex: Full
Port: MII
PHYAD: 0
Transceiver: internal
Auto-negotiation: on
Current message level: 0x00000007 (7)
Link detected: yes
HANDY TOOLS: IPERF

- Iperf
 - Available in EPEL repository
 - This add’s the EPEL repository
 - iperf executable both client and server
 - iperf -s
 - iperf -c <hostname>
HANDYTOOLS: IPERF

[root@test ~]\# iperf -s

Server listening on TCP port 5001
TCP windows size: 85.3 Kbyte (default

HANDY TOOLS: IPERF

[root@test ~]# iperf -m -c localhost

Client connecting to localhost, TCP port 5001
TCP window size: 49.2 Kbyte (default)

[3] local 127.0.0.1 port 44316 connected with 127.0.0.1 port 5001
[3] 0.0-10.0 sec 3.92 Gbytes 3.36 Gbits/sec
[3] MSS size 16384 bytes (MTU 16424 bytes, unknown interface)
HANDY TOOLS: IPERF

- Very useful for:
 - Detecting *real* network bandwidth
 - Investigating real MTU size